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Introduction 

Fall 2019 – Spring 2020 Independent Studies in Engineering Research 

“An autonomous small scale of the NASA JPL Mars Curiosity Rover using ordinary 

sensors and FPGA programmable logic blocks interconnected to microcontrollers 

for object detection, collision avoidance and navigation on unknown terrains. This 

is not an indoor project.” 

The purpose of the NASA JPL Mars rover is to demonstrate that a trivial amount of navigation 
information e.g. going from Point A (start) to Point B (end) can be achieved with ordinary sensors, 
FPGAs and microcontrollers. The design integrates object detection and collision avoidance 
during the autonomous journey. Other known designs incorporate microcomputers to process 
sizable amounts of data. The novelty of our project is the use of off-the-shelf components and 
embedded microcontrollers for autonomous operation.  

The mechanical foundation is entirely 3D-printed at the college and takes about 300 hours of 
machine time per rover. It was designed by Roger Cheng and nicknamed “Sawppy the Rover.” The 
design was inspired by NASA’s Jet Propulsion Laboratory (JPL) Open Source Rover project. Most 
of the differences between Sawppy and its JPL inspiration were motivated by a desire to reduce 
cost and complexity. Sawppy, whose layout and proportions, mimics that of Mars Curiosity and 
Mars Perseverance. It faithfully reproduces the suspension kinematics of real rovers and is 
intended to be a hardware platform for future software projects in autonomous operation. 

The mechanical foundation is something our project didn’t design, but we built it at the college 
from Open Source libraries. Our project is totally Open Source and is funded by NASA through 
the Pennsylvania Space Grant Consortium (PSGC). 
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Overview 

Block diagram 

 
 

Major Components  
Components were added to the existing mechanical (chassis) design so the SAWPPY Rover could 
perform the following functions: 

● Obstacle Detection 
● Path Calculation 
● Movement 

 

Obstacle Detection 
One or more sensors (Sensor 1 and Sensor 2) allowed the detection of obstacles which would impede 
the rover and allow the detection of a gap wide enough to let the rover pass through. 
 

Path Calculation 
A GPS (global positioning system) board is used to determine the rover’s starting position and aid in its 
determination of arriving at a destination. Because of the limited accuracy of the GPS (>10m) an IMU 
(internal measurement unit) was also used to supplement the path calculation 
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Movement 
In general, the rover must be able to go forward, go backward and turn. These movements allow it to 
arrive at its final destination and maneuver around obstacles encountered on the way. 
 Movement is accomplished by 6 Wheel Motors and Steering Servos on the four corner wheels. These 10 
devices allow the rover to perform a wide range of maneuvers. A Servo Interface allows control of each 
motor and servo. 
 
There were also some general-purpose components to support these functions. 

● Microcontroller Board- executes the code and provides the required interface to the other 
devices 

● Power Supply- provides the necessary voltages, limits the current draw of a fault and allows 
power to be switched off 

 
Rover 1 (Instructor) 

 
 
Rovers 2 and 3 (Students) 
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Mechanical Design Team 3 
Ezra Galapo and Jaden Weed 

 

Rocker-bogie design 
NASA invented the rocker-bogie in 1988 for the use of the Mars Rover SOJOURNER. It has since been 

used in 5 other rovers sent to Mars. The interesting part about the rocker-bogie is that there are no 

springs or stub axles. This helps it go over different obstacles and allows it to tilt up to 45 degrees 

without tipping over.1 Each of 6 wheels has its own motor which puts less strain on each motor. The 

front and back wheels each have a servo so they can be steered independently.  This allows the rover to 

turn in place. 

Figure 1 

 

 
1 https://en.wikipedia.org/wiki/Rocker-bogie 

https://en.wikipedia.org/wiki/Rocker-bogie
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Parts list 
The list of mechanical parts to be purchased and manufactured for this rover to be built are below. 
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Qty Part Picture Description 

88 2 Nut Holder 

 

 
 

These hold two M3 nuts at the correct spacing 
for rover assembly. 

12 3 Nut Holder 

 

These hold three M3 nuts at the correct spacing 
for rover assembly. 

6 Wheel hub 

 

The wheels attach to this hub. A set screw 
engages a flat on the 8mm drive shaft. 

10 
Servo-

Coupler 

 

This connects the servo to an 8mm shaft. 

10 
Servo-

Bracket 

 

Mounts the servo is to the rest of the chassis. 
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6 Wheel 

 

 

4 
Steering 
Knuckle 

 

The steering knuckle connects the steering shaft 
to the driving shaft. It is a key part of rover 

suspension geometry. 

4 Body corner 

 

These make up the four corners of the main 
equipment bay. 

2 
Differential 

Brace 

 

 
 

The differential on the rover is different from 
the differential in an automotive drivetrain. 

Instead of distributing different forces across 
different drive wheels, this differential 

distributes suspension forces across the two 
sides. It is a key part of how the rocker-bogie 

suspension keeps all six wheels on the ground. 



   

 

11 | P a g e  
 

    

2 
Differential 

Link 

 

 
 
 

 

1 
Differential 

Lower 

 

 
 

 

1 
Differential 

Upper 

 

 
 

 

2 Rod Support 

 

Supports for the rod and the upper and lower 
differential. 



   

 

12 | P a g e  
 

    

2 Fixed Knuckle 

 

 
 

The two fixed knuckles connect the middle non-
steerable wheels to the aluminum extrusions 

making up the suspension structure. 

2 Front corner 

 

 
 

These hold the steering actuators along with the 
steering shaft. 

2 Rear Corner 

 

 
 

These hold the steering actuators along with the 
steering shaft. 

2 Bogie Pivot 

 

 
 

Houses two 608 bearings and two aluminum 
extrusions, one connecting to mid wheel 

assembly and the other connecting to rear 
corner wheel assembly 

2 Bogie Body 

 

 
 

This will become part of the rocker assembly 
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2 
Rocker/suspe
nsion rocker 

joint 

 

 
 

Houses the two bearings for the rocker assembly 
to pivot on, and connects to two aluminum 

extrusion beams. One leading to the bogie pivot 
point. 

2 
Rocker Body 

Mount 

 

 
 

Connects the rocker-bogie suspension of one 
side to the main chassis equipment box. 

2 
Differential 

End 

 
 

 

 

3D printed parts 
Most of the rover parts are 3D printed. There are 67 major parts. These took over 300 hours to print. 

 

Filament selection 
One of the first decisions was which filament to use. We looked at PLA and PETG.  

PLA characteristics 
- Vegetable-based plastic material 

- Very brittle 

- Easy to take off of bed 

- Good support structure 

- Bio compostable  
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PETG characteristics 
- PETG is a modified version of PET (polyethylene terephthalate) mixed with glycol which makes it 

less brittle, clearer, more durable and impact resistant. PETG is extremely durable and prints 

without odor. Little to no warping, ideal for printing big stuff. 

- Very strong, but can be scratched up very easily 

- Very bad support structure, however very good layer adhesion, so the prints come out strong 

- Great chemical resistance, along with alkali, acid and water resistance. 

- Odorless. 

3D Printing filaments comparison 
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PLA (polylactide) vs. PETG (polyethylene terephthalate) 
• PLA is more brittle than PETG, unless you strengthen it.  

• PLA and PETG have very similar densities.  

• PETG needs a heated bed, whereas PLA can be printed cold.  

• Layer adhesion with PETG is typically unmatched, leaving very strong and durable prints.  

• PLA prints supports that are easy to remove, whereas these are harder (but not impossible) to 

remove with PETG.  

 
Overall PETG was used for the durability that it has over PLA. 
 

Part modifications 
There was a problem with the wheels and the wheel hubs. The wheel hub was too big for the wheel. 

There were two solutions: make the wheel hub smaller or make the wheel bigger. Since the wheel did 

not contain any other part, it was made smaller. A 3% larger wheel worked. 

Before the adjustments 

 
 
Originally it was a tight fit and very hard to take off. 
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After the adjustments 

 
 
With a 3% larger wheel it can be more easily removed. 
 
PETG wheels needed multiple trials to get the printer setting right. Slowing the print speed was 
ultimately used to produce quality wheels. 
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First Attempt 

 
 
The quality was terrible, but once the printing speed was slowed, the quality improved immensely. 
 
 
Final Product 

 
 
The biggest problem was all of the failures that occurred while printing as well as the stresses on 
different parts. 
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Failures 
Most of the failures were produced during 3D printing. The biggest problem once the pieces were 

assembled were the servo couplers. There was too much stress and they cracked by the brass heat set. 

 
 
There is a document with all of the failures and what may have been the issue for some of them. Other 
ones are hard to tell. 
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This is an example of one where something happened during the print at the end, and there were too 
many variables to figure out what exactly was wrong with it. 
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Aluminum extrusions 
The aluminum extrusions are the key components that hold everything together. They are what make 
up the chassis as well as connecting the wheels and legs into one unit. 
 

 
There are 6 different sizes to be made for the rover to make sure the chassis is leveled. 

 

Aluminum rods 
The rover chassis uses 8mm diameter rods as one of the components. 30cm long aluminum rods were 
purchased as a raw material. The design calls for the following final components: 
 

Qty Description Grooves Detents Overall Length (mm) 

6 Wheel axle drive shaft 2 2 50 

4 Steering shaft 2 2 61 

2 Bogie pivot shaft 3 0 64.5 
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2 Rocker pivot shaft 3 0 82 

1 Differential shaft 0 0 300 

 

A hacksaw, vice and file were 
used to cut the rods to the 
correct length and smooth the 
ends. 
 

 
 

The grooves were used to hold the E clips. 
These were made by fabricating a hacksaw 
blade clamping fixture and turning the cut 
rod in a drill press. The drill press table was 
adjusted so the hacksaw blade fixture 
contacted the rod at the correct location. 
The fixture was pulled against the rotating 
rod. The hacksaw blade produced a 1mm 
wide groove which matched the E clip 
thickness.  
 

 
 
The detents were made by filing the rods as they were clamped in a vice. 
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Laser-cut acrylic 
Once the construction of the rover chassis was finished, it needed a place to mount the electronics. A 
bottom plate, top plate and sensor brackets were designed for this purpose.  
 
There had to be multiple designs for the bottom and top plates. AutoCAD was used to make design. 
Acrylic was used for laser cut parts and polycarbonate for handmade parts. The laser cutter was used for 
most of the pieces. Because AutoCAD is theoretical, different plates were made before it was correct. In 
addition to the bottom and top plates, the brackets for the ultrasonic sensors were cut from acrylic. 
 
Bottom Plate Design 
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Top Plate Design 
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IMU shock mounting 
The rover used an IMU (inertial measurement unit) to measure small distances moved. The IMU in this 
rover consisted of a three-axis accelerometer, a three-axis gyroscope, and a magnetometer. To 
accurately measure the distance the IMU had to be mounted in the center of the rover and use 
dampeners to filter noise from traversing rough surfaces. 
 
 IMU 
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Wheel traction 
The rover wheels are patterned after the wheels used on the Mars rover. While acceptable on grassy 
surfaces, the 3D printed version for this rover provided little traction on a hard surface1. Three possible 
solutions were considered. 
 
1. Adding large rubber bands on the outside of each wheel. Two suitable products were found. 
 

  
Ranger Bands by Scol Survival Supply (6.5-inch 

flattened length, 1.5-inch width) 
Size 107 rubber bands (180mm flattened length, 

15mm width) 
 
 
2. Spraying the outside of the wheels with Plasti Dip. 
This idea came from the following entry on New Screwdriver: 
https://newscrewdriver.com/2018/06/09/plasti-dipping-sawppy-the-rovers-wheels/ 
Attaching the wheel to a rod inserted into a hand drill and turning slowly helped to produce an even 
coating. It took 5 coatings before the surface had significant grip.      

 

 

https://newscrewdriver.com/2018/06/09/plasti-dipping-sawppy-the-rovers-wheels/
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3. Using a flexible filament in the 3D printing process. Multiple choices exist. Due to time constraints, 

this idea was not tried. 
 
    
1 This was initially an advantage before the wheel motors and turning servos were adjusted properly for turns. 

When improperly adjusted there was undue stress on the mechanical components. Slipping wheels minimized this 
stress. 
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Electrical Design Team 4 
Paul John Balderston 

 

Electrical overview 
Diving directly into analyzing the rover’s electrical schematics may be a cumbersome approach for an 
individual attempting to acquaint oneself with the system that has been implemented. The block diagram 
given below provides an elegant and simplified introduction to the rovers’ onboard electronics. The figure 
primarily shows how power is distributed to all major components and, subsequently, which devices send 
and receive information from each other. To develop a full understanding of the electrical design of the 
rovers one should continue their reading of the electrical design portion of the project notebook. 
 

 
Block Diagram- Electronic Components 

 

Microcontroller considerations 
Perhaps the most significant constraint of the project was that all computation was to be 
microcontroller based. What microcontrollers may lack in memory space and processing power when 
compared to their microcomputer cousins is made up for in cost effectiveness and ease of use. 
Microcontrollers are not capable of running an operating system. While this in and of itself is a 
limitation, it greatly influenced and led our team to use efficient mathematical algorithms to processes 
information and optimize the rover’s navigation. This lack of an operating system does allow for quick 
and easy software development in the Arduino IDE. Procedural and object-oriented programming are 
used to create the scripts responsible for the rover’s operation. 
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Despite the inherent limitations of a microcontroller, our project has demonstrated how one is able to 
acquire adequate memory space and computational power for autonomous robotics applications from 
these inexpensive, easy to use devices. 
 
When selecting the microcontroller to be used onboard the rover we aimed for memory space and 
processing power while putting a special emphasis on having a high number of pinouts in order to allow 
for the implementation of many peripheral devices. The following microcontrollers were evaluated on 
the associated parameters listed. 
 

Parameter Adafruit METRO 328 Adafruit METRO M0 Express Adafruit Grand 
Central M4 Express 

Microchip ATmega328P ATSAMD21G18 ATSAMD51P20 

Word size (8, 16 or 
32 bits) 

8 32 32 

Clock speed 16MHz 48MHz 120MHz 

RAM (aka SRAM) 2KB 32KB 256 KB 

Flash 32KB 256KB 1MB 

A/D convertor 
(number of bits, 
number of channels) 

6 channels x 10 bits 20 channels x 12 bits 20 channels x 16 bits 

Interface voltage (5V 
or 3.3V) 

5V (can use 3.3V-5.5V) 3.3V 3.3V 

Serial (UART) 
channels 

1 6 8 

I2C interface Yes Yes Yes 

 

Power considerations 
 

Battery selection 
The supply voltage requirements of the motors limited the maximum battery voltage. While the LX-16A 
datasheet does not explicitly specify a supply voltage range is does specify other parameters at 2 supply 
voltage values, 6V and 7.4V. Consequently, a 2S LiPo battery with a nominal 7.4V value was chosen. The 
rover has plenty of space a battery with a capacity of 5000mA-hr was specified. With 6 wheels turning at 
a maximum speed 1630mA is used. Using 80% of the battery capacity allows 2.5 hours of driving. 
 

Fuse size 
Implementing a fuse into the rover’s power distribution system provides a necessary failsafe. In the 
event that an onboard component was to short-circuit or spontaneously draw excess current, the fuse 
would prevent all other onboard electronics from being damaged.  
 
To properly size the fuse, one must develop an awareness for the maximum average current draw of the 
system. The servo motors are capable of the largest amount of power consumption of any onboard 
component. Recognizing this fact allows for the simplification in determining the aforementioned 
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parameter. One may utilize the maximum current draw of all the servos running at maximum speed to 
obtain a close approximation of the parameter for the system as a whole. 
 
Proceed by elevating the rover so none of the wheels make contact with the floor or ground. Connect a 
PC to the servo bus linker board via USB. Make sure the LewanSoul Bus Servo Terminal software is 
installed. Connect a digital multimeter between the servo bus’s associated connector terminal on the 
power distribution board and the corresponding wire which plugs into said terminal and connects to the 
servo bus linker board. Set the multimeter to measure current. Open the Bus Servo Terminal 
application. Begin by running one servo at maximum speed. Measure and record the current draw of 
this servo motor. Incrementally activate the remaining servos excluding those used for steering. 
Measure and record the current read by the multimeter each time an additional servo begins running. 
Use excel to organize and plot the acquired data once the current draw from all six rolling servos has 
been measured and recorded. To determine maximum current draw, extrapolate the current trend line 
out to include 10 servos. The multimeter readings and predicted current draw of 10 servos is shown in 
the tables below.  
 
Note: For this test the battery voltage was 7.8V. 
 

Motors Running  Measured Current Draw (mA) 

0 113 

1 340 

2 650 

3 840 

4 1050 

5 1350 

6 1630 

 
 

Motors Running Predicted Current 
Draw (mA) 

Lower Bound of 
Prediction (mA) 

Upper Bound of 
Prediction (mA) 

7 1855 1737 1973 

8 2104 1985 2222 

9 2353 2234 2471 

10 2602 2483 2720 
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With 10 servos running a current of approximately 2.6A is predicted. A fuse should be rated for 135% of 
the typical maximum steady state current. The following calculation was performed to determine the 
proper amperage fuse for the rover. 

2.6𝐴𝑚𝑝𝑠 ∗ 1.35 = 3.51𝐴𝑚𝑝𝑠 
 
After rounding this value up to the next standard amperage fuse, a 5 Amp fuse was selected. 

 

Wiring considerations 
Flimsy wiring and faulty connectors often prove to be large sources of error in any electrical system. All 
connectors were selected to enhance reliability and ease of repair. The following tables show which 
connectors are implemented on each printed circuit board. 
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Power distribution board 
 

Qty Description Picture 

4 
Barrel Connectors (5.5mm Outer Diameter, 
2.1mm Inner Diameter) 

 
 

1 4-Pin Dupont Male Connector 

 
 

1 XT60 Connector 
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Microcontroller shield board 
 

Qty Description Picture 

2 3-Pin Dupont Male Connectors 
 

 

8 4-Pin Dupont Male Connectors 
 

1 6-Pin Dupont Male Connectors 
 

1 9-Pin Dupont Male Connectors 

4 5-Pin Dupont Female Connectors 

 
 

 

Servo motor control board 
 

Qty Description Picture 

12 Molex 0022035035 3-Position Connectors 

 
 

All peripheral devices utilize the male Dupont connectors with the appropriate number of pins to 

facilitate the delivery of all signals from the peripheral component to the device it is transmitted 

information to and drawing power from. 

 

The connectors shown on the previous pages aim to provide extreme reliability by interlocking both 
ends of the connection. All connectors are low cost and if damaged can easily be replaced. The Dupont 
female to female crimp housing proved to be exceptionally easy repair. The crimp locked in the housing 
may simply be removed and replaced with another wire if the connection becomes damaged.  
 
The barrel connectors, used primarily for power distribution, have a hot and ground wire splitting from 
the male end and may be spliced and soldered onto another wire in order to extend their length. 
 
Heat shrink tubing is used wherever wires are spliced together in order to ensure a secure connection 
and reliable connection. More information on the Molex connectors and their associated wires is in 
Components, Servo and Motor Control Section. 
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Components 
Developing a cost-effective opensource rover provides the opportunity for a larger number of 
individuals to implement their own version of the SAWPPY project. Prioritizing overall affordability as an 
essential benchmark for the system incentives one to seek out off-the-shelf electronics with high levels 
of technical capability. The hardware used to facilitate and enable autonomous navigation, localization, 
object detection, and obstacle avoidance is discussed in the following section. A list of these 
components and their electrical characteristics is provided below.  
 

Component Manufacturer Part Number 
Supply 
Voltage (V) 

Maximum 
Current (A) Logic Level 

Grand Central M4 
Express 
Microcontroller 
Board Adafruit 4064 7.4  3.3V 

Servo Driver Board 
(Bus Linker) LewanSoul B073WRLJB2 7.4  5V 

Servo Motors LewanSoul B073WR3SK9 7.4 2.5 5V 

Ultrasonic Sensors RCWL 1601 3.3  3.3V 

IMU Adafruit 2472 3.3 0.012 3.3V 

GPS Receiver Adafruit 746 3.3 0.025 3.3V 

GPS Antenna Cirocomm 580 N/A N/A 3.3V 

2S, 5000mA-hr, 
LiPo Battery Duratrax ONYX 5000 7.4V N/A N/A 

 

 

Servo and motor control 

 

 
LX-16A servo motor Bus servo interface board 
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The LewanSoul LX-16A servo motors are utilized to both drive and steer the rover. These servos uniquely 
possess two operating modes. The servo mode allows the motors to turn to turn a specific angle 
between 0 to 240 degrees. Meanwhile, the servos are also capable of operating as a typical DC motor, 
continually spinning at a given speed. The servo mode is utilized for steering and the motor mode is 
used for rolling.  
 
LewanSoul provides a 
communication bus that 
distributes power and transmits 
operating instructions to each 
individual motor. The serial 
communication interface allows 
for the servos to all be connected 
to one of two ports on the bus 
linker board. Each individual servo 
possesses an assigned serial 
address. The LewanSoul Bus Servo 
Terminal allows the assignment of 
these addresses and testing in 
both servo and motor modes. This 
is shown in figure #.  
 
 
 
 
The servo bus linker board will provide the proper power and operational data to the appropriately 
assigned servo. This allows one to either “daisy chain” or connect the power, data, and ground pins of 
the servos in series with their respective counterparts and still receive the appropriate signals 
transmitted from the bus linker board.  
 
  

 LewanSoul Bus Servo Terminal Software Suite 
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Servo motors 
The LX-16A Bus Servo has a 3-position connector that is wired to a Bus Servo Interface Board. There are 
cables with the appropriate connectors available, but they are too short for the ten LX-16A Bus Servos 
used on the rover.  
 

 

 

 
 

LX-16A bus 
servo 

Supplied cable, 
3-conductor wire 

Bus servo interface board 

 
Two methods of making a longer cable were used. 
 

1. Cut the available short cables in half and splice an appropriate length of 3 conductor cable in the 
middle. The 3-conductor cable was 22AWG with red-white-black colored insulation (OliYin 50 
feet 22AWG Servo Cable, available from Amazon). 

 
2. Cut a 3-conductor cable to length, strip the insulation on the wire ends, crimp a contact on each 

wire and insert into a housing. It took some research to identify the actual connector on the LX-
16A Bus Servo and the Bus Servo Interface Board. The DigiKey web site has an excellent part 
search tool. Once the connector was identified, the DigiKey web site listed compatible contacts 
and crimping tools. The following parts were used: 
 

 

Housing Molex 0050375033 3 position contact housing 

Contact Molex 0008701038 socket contact 

Crimping Tool Molex 64016-0201, service grade tool 

 
Note: The crimping tool is about $140. The contacts are small and it took some practice to make 
a reliable crimp. 

 
The LX-16A Bus Servo is controlled with a serial communication protocol. Each servo is assigned a 
unique address so multiple servos can connect to the same serial bus. The Bus Servo Interface Board has 
2 servo connectors. A new printed circuit board was developed to replicate the servo connectors so the 
10 servos could connect to one Bus Servo Interface Board. 
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Microcontroller 
The Adafruit Grand Central M4 Express was selected as the microcontroller. The M4 provided plenty of 
memory space and processing power. However, its true advantage was the plentiful number of pinouts. 
The M4 is equipped with 70 GPIO pins, 16 of which are analog in and two are analog out. There are 5 
serial communication channels present and may be used for additional I2C/SPI/UART connections. The 
M4 is assembled using the same footprint as the popular Arduino Mega 2560. This elevates the boards 
ease of use as perforated shield boards may be used to protype PCB designs to connect to the M4. For 
reference, a picture of the Adafruit board is given below. 
 

 
 

Object detection sensors 
Robust object detection is crucial for the facilitation of autonomy and obstacle avoidance. Primarily 
ultrasonic and optical sensors were tested. Multiple time of flight sensors and laser distance sensors 
were compared to the ultrasonic that are used in the final implementation of the system. The optical 
sensors we tested proved to be unreliable when attempting to measure the distance of a dark surface, 
such as asphalt, or detect an object that caused the light emitted from the sensor to scatter, bushes 
were shown to have this affect. The optical sensors not only lacked reliability but also lacked the range 
and field of view provided by the ultrasonic sensors. Time of flight sensors emit a light beam the travels 
in a straight line forward and is reflected back to the senor. This provides an extremely narrow field of 
few. The ultrasonic sensors allow sound waves to propagate out from their source in a cone like manner. 
The datasheets of the implemented ultrasonic sensors suggest a field of view of approximately 30 
degrees. Once the sound waves reflect off of an object and travel back to the sensor the of the object 
from the sensor is determined. 
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Two ultrasonic sensors are mounted on the front of the rover. This maximizes the accuracy and field of 
view of distance sensing along with narrowing a blind spot that would otherwise be present near the 
front of the rover.  
 

 
 
Initially, HC-SR04 ultrasonic sensors were used. These sensors operated with a 5V power supply and 
logic level. This required a resistor divider to lower the voltage of echo signal to be compatible with the 
3.3V logic level of the microcontroller. Changing to ultrasonic sensors that operated with a 3.3V power 
supply and logic levels allowed us to eliminate the resistor divider. 
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IMU and GPS 
The IMU (Inertial Measurement Unit) and GPS (Global Positioning System) enable the localization and 
tracking of the rovers’ position. The GPS is used to give the general position of the rover. Civilian GPS is 
accurate within radius of approximately 15 meters. This inaccuracy is the reason to add an IMU and use 
sensor fusion. 
 
 The IMU collectively houses a gyroscope, accelerometer, and magnetometer. By combining readings, 
orientation in three-dimensional space can be precisely measured. The IMU readings are combined with 
the measurements of the GPS. A weighted average of all localization parameters is computed to achieve 
a position reading with the highest level of accuracy modern technology is capable of. These two 
components are essential for facilitating accurate localization and position. 
 
A 7 square inch aluminum ground plate was added under an external GPS antenna. This increases the 
antenna’s gain. This was added to allow rover testing indoors. For outdoor use eve the increased gain is 
probably not necessary.  
 

 
 

 

IMU board GPS board 
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Battery 
The rovers each use a 7.4V 5000mAh 50C 2S LiPo battery. To prevent permanent damage a LiPo battery 
should never be discharged below 3V per cell. A 3.5V per cell limit is a more conservative value to 
improve the battery lifespan.1 The 2S term in the battery description indicates that it has 2 cells in series, 
so 7.0V is the appropriate cutoff voltage. 
 
To verify this value on our rover, data was taken on the battery at various states of discharge. While the 
battery was powering the wheel motors, a digital voltmeter measured the battery voltage and the 
battery capacity was measured with a Hyperion EOS Sentry battery tester. 
 

DVM 
Voltage 
(V) 

Capacity 
(%) 

7.93 75 

7.80 68 

7.74 69 

7.69 62 

7.65 61 

7.63 60 

7.60 54 

7.57 54 

 
Excel produced the following trendline:  

% = 59.6*V - 396 
 
Extrapolating the data shows at 7.0V, the capacity is 21% which is an appropriate place to stop using the 
battery and recharge it. 
 
The Operating Instructions that came with the battery included: “Never discharge battery to a level 
below 3V per cell under load.” 
 
1 A Guide to Understanding LiPo Batteries, www.Hyperion-world.com 

 

PCB - Servo motor control board 
The servo motor control board provides power and operating instructions to the servo motors. The 

LewanSoul bus linker is attached to the middle of the board through the use of a hook and loop adhesive 

patch. The bus linker uses two ports to send signals to the servos on the right and left-hand sides of the 

rover independently. Two cables run from the servo bus linker to the Molex connectors on their respective 

sides of the board. These connections occupy two out of the six connectors wired in parallel on each side 

of the board. The servo motors are connected to the five remaining Molex connectors on each side. Any 

servo may be plugged into any Molex connector and still receive the proper signals thanks to the servo 

bus linkers serial communication protocol. 
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Reference 
Designator Component Manufacturer Part Number Quantity 

M3PIN_CONN Servo Connectors Molex 22035035 12 

N/A Bus Linker Board LewanSoul N/A 1 

Parts List- Servo Motor Control Board 

 

 
Schematic, Servo Motor Control Board 
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Printed Circuit Board Layout- Servo Motor Control Board 

 

Power Distribution 
The power distribution board is designed to protect the battery distribute the battery voltage, provide a 
high current 5V, and provide signals to record battery voltage and current.  
 
Perhaps the most important failsafe of the entire system is the 5 Amp fuse. Current flows directly into 
the fuse from the battery connector, preventing the battery from being damaged in the event of an 
excessive current draw. The fuse holder allows both 5mm x 20mm and 3AG size fuses. 
 
Barrel connectors are used to establish secure connections between major electrical components and 
the power distribution board. Resistor dividers lower the range of analog signal to the microcontroller 
analog to digital converter. A 5V regulator provides a higher current supply than is available on the 
microcontroller board. A current sensor provides an analog signal for use by the microcontroller.  
 
A kill switch and digital voltmeter are wired to the power distribution board and mounted on the rear 
top plate of the rover. Allowing the operating voltage of the battery to be monitored and the rover to be 
easily switched on and off. 
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The plated through holes for the barrel connectors were incorrectly designed to be circular when in fact 
the pins of the barrel connectors are oblong. Excess solder was used to create solder joint to attach the 
barrel connectors to the printed circuit board. This adequately secured the connector to the pad using 
the solder as an anchor.  
 

Reference 
Designator Component Manufacturer Part Number Quantity 

P1 XT60 Battery 
Connector 

Sparkfun PRT-10474 1 

5A Fuse Block Cartridge Schurter Inc. 0031.8231 1 

5A 5Amp Fuse Littelfuse Inc. 0218005.MXP 1 

SW1 Kill Switch HiLetgo MTS102 1 

DVM Digital Volt Meter N/A N/A 1 

U1 Current Sensor Pololu ASC724 1 

U2 5V Regulator Pololu D24V50F5 1 

R1  1.8k Ω Resistor N/A N/A 1 

R2, R4 3.3k Ω Resistor N/A N/A 2 

R3 5.6k Ω Resistor N/A N/A 1 

J1, J2, J3, J4 Female Barrel 
Connector 

CUI Devices PJ-060A 4 

J5 Male Header Pins N/A N/A 2 

J6 4 Position Dupont 
Connector 

Amphenol 78211-004LF 1 

Parts List- Power Distribution Board 
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Schematic, Power Distribution Board 
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Printed Circuit Board Layout, Power Distribution Board 

 

Microcontroller shield 
The M4 microcontroller connects to any peripheral device used to obtain information regarding the 

rover’s location and environment and send instructions to operate the servos. The shield board sits atop 

the M4 microcontroller board, providing a means of easy connectivity and additional pinouts for those 

components which may require 3.3V or 5V power to be supplied from the microcontroller. 

 

Dupont connectors are used to attached peripheral devices to the shield board. Theses secure 

connectors are strategically placed to allow for ease of use and enables multiply components to be 

connected to the 3.3V, 5V, and GND pins at once. 

 

5-position female connectors are attached to the 3.3V, 5V, and GND pins. Enabling additional sensors 

and devices to be mounted onboard the rover and utilize the microcontroller to supply voltage to and 

ground the newly installed component. This allows for rapid onboard testing of new components. 
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Reference Designator Component Quantity 

US1, US2, US3, US4, 

IMU, GPS, L, CS/Vbat 

4 Pin Dupont Connectors 7 

S, SBL 3 Pin Dupont Connectors 3 

SPI/BT 6 Pin Dupont Connectors 1 

SL 9 Pin Dupont Connectors 1 

N/A Male Header Pins 106 

C1 1k μF Capacitor 1 

R1 3.3k Ω Resistor 1 

R2 1.8k Ω Resistor 1 

Parts List- Microcontroller Shield Board 
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Schematic, Microcontroller Shield Board 
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Printed Circuit Board Layout, Microcontroller Shield Board 
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Software Design Team 1 
Noah Williams and Salvatore Sparacio 
 

Architecture 
The purpose of this document is to describe each and every folder within the project. It is different from 
the Design Document which describes the why and how. This describes the what, what each individual 
folder does. 
 
There are two important folders. Libraries, which contains all of the essential code needed. And 
Sketches, which is a specific implementation of a library. Inside sketches are two folders Main and 
Examples. Main contains the finished sketches that combine multiple libraries. Examples are a record of 
all tried methods, and test individual libraries. 
 
The exact architecture used is called Component Based Programming. Each part is an individual 
component that attaches to the sketch. Most components work as individual units, with a setup method 
and an update method. The setup method is called during the setup in Arduino, the update is code that 
updates continuously. Doing so allows us to make changes without it affecting all of the codebase. 
Understanding this design allows for future programmers to add to the code without breaking or 
affecting it much. The sketches are intentionally small, and if one wanted to add their own code, they 
simply make a component, with a setup and update, then call them inside a sketch. 
 
Beginner programmers may notice something odd. That is, there are many deprecated folders located 
within the project. This is intentional, it is a common practice (there exists many other practices) in 
Software Engineering to never delete (if you can) and instead create a new library to replace. Keeping 
old code helps to not only prevent breaking the system, but fixing future bugs. In addition, there were 
many past and failed attempts. The old code keeps a record of all methods used for future programmers 
who wish to add future revisions (such as LIDAR). 
  
The additional code does not affect the size of the sketch. When uploaded to M4, only the referenced 
libraries are loaded. 
 

Main 
Main is the finished product. The final sketches for quickly running the rover.  

Manual_Destinations Performs Rover going to A to B while avoiding 
obstacles. Set points manually. 

VirtualRover Performs Rover going to A to B while avoiding 
obstacles. Set points automatically. 

WHEEL_TEST Tests the wheels by driving in a particular order. 

 

https://github.com/U-K-L/autonomous_rover/tree/master/sketches/Main/Manual_Destinations
https://github.com/U-K-L/autonomous_rover/tree/master/sketches/Main/VirtualRover
https://github.com/U-K-L/autonomous_rover/tree/master/sketches/Main/WHEEL_TEST
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Libraries 
Libraries is the actual code. It performs all of the necessary calculations to ensure a sketch 
works. 
 

Adafruit_BNO055 Adafruit’s BNO055 Library. 

Adafruit_GPS Adafruit’s GPS Library 

Adafruit_LSM303_U Adafruit’s LSM303 IMU (deprecated) 

Adafruit_Sensor Adafruit’s General Sensor Library 

AutonomousDrive Combines several libraries to Drive the Rover from A to B While 
Avoiding obstacles. 

Button Code to add mechanical buttons. 

Distance Allows Rover to turn in place (deprecated) 

DriveTrain Handles turning the wheels. This includes turning in place and 
speed of motors. 

GPS Controls the GPS. 

Map  Loads internal maps from the SD Card. (Requires Virtual Rover) 

MultiSerial Handles creating multiple Serials on the Grand Centro M4 

SerialCommand Creates Software Serials 

SparkFun_VL6180X Used for Time Of Flight Sensors. 

coroutine Creates coroutines for single threaded multitasking. This is to be 
used instead of Arduino’s Delay function. 

imumaths Handles Matrix maths and Quaternions. 

internalMapping Stores points from LIDAR spin (deprecated) 

kalmanFilter Combining IMU and GPS data, note the actual Kalman Filter 
section of the code is commented out, but the library is still 
heavily used. Due to this, the name is a misnomer. 

node  Node class for creating a graph for LIDAR (deprecated) 

orientation Computes all of the IMU calculations. 

save Saves to an SD Card. 

 

https://github.com/U-K-L/autonomous_rover/tree/master/libraries/Adafruit_BNO055
https://github.com/U-K-L/autonomous_rover/tree/master/libraries/Adafruit_GPS
https://github.com/U-K-L/autonomous_rover/tree/master/libraries/Adafruit_LSM303_U
https://github.com/U-K-L/autonomous_rover/tree/master/libraries/Adafruit_Sensor
https://github.com/U-K-L/autonomous_rover/tree/master/libraries/AutonomousDrive
https://github.com/U-K-L/autonomous_rover/tree/master/libraries/Button
https://github.com/U-K-L/autonomous_rover/tree/master/libraries/Distance
https://github.com/U-K-L/autonomous_rover/tree/master/libraries/DriveTrain
https://github.com/U-K-L/autonomous_rover/tree/master/libraries/GPS
https://github.com/U-K-L/autonomous_rover/tree/master/libraries/Map
https://github.com/U-K-L/autonomous_rover/tree/master/libraries/MultiSerial
https://github.com/U-K-L/autonomous_rover/tree/master/libraries/SerialCommand
https://github.com/U-K-L/autonomous_rover/tree/master/libraries/SparkFun_VL6180X
https://github.com/U-K-L/autonomous_rover/tree/master/libraries/coroutine
https://github.com/U-K-L/autonomous_rover/tree/master/libraries/imumaths
https://github.com/U-K-L/autonomous_rover/tree/master/libraries/internalMapping
https://github.com/U-K-L/autonomous_rover/tree/master/libraries/kalmanFilter
https://github.com/U-K-L/autonomous_rover/tree/master/libraries/node
https://github.com/U-K-L/autonomous_rover/tree/master/libraries/orientation
https://github.com/U-K-L/autonomous_rover/tree/master/libraries/save
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sphereNode 3D representation of Node class (deprecated) 

ultrasonic Handles setting up an ultrasound. 

vector3D Handles vector operations. Note: IMU maths also 
handles similar tasks, but they differ in memory 
usage. Vector3D is specific with 3 floats, IMU 
maths is general and can be nxn. 

 

Examples 
Examples are examples of a library. It shows exactly how to run a library with a sketch. There are many 
deprecated examples that exist solely to show how to run a function. This is important when adding in 
new code, or understanding how the library works. In practice, you can copy and paste functionality of 
the examples and create a unique new sketch. 

AutonomousDrive Drives rover from point A to B. Similar to Manual 
Destination, but shows the entire code within the 
Arduino IDE. (Deprecated) 

BearingCalculations  Shows bearing and heading calculations. 

Button Mechanical button test. 

DistanceMovementTest Test the rover using the IMU to move a set 
distance. 

DistanceReading Records Ultrasound distance to SD card. 

GPS Shows GPS data. 

HeadingTest Prints heading. 

LoadMap  Loads map from SD card (from Virtual Rover). 

LoadWayPoints Tests communication with Virtual Rover app. 

RPLIDAR_map Tests LIDAR scans. 

RoverTest Drives the Rover while recording voltage. 
(Deprecated). 

Save Tests saving any string to SD card. 

SaveMap Test saving GPS points to SD card. 

UltrasoundTest Prints ultrasound data. 

https://github.com/U-K-L/autonomous_rover/tree/master/libraries/sphereNode
https://github.com/U-K-L/autonomous_rover/tree/master/libraries/ultrasonic
https://github.com/U-K-L/autonomous_rover/tree/master/libraries/vector3D
https://github.com/U-K-L/autonomous_rover/tree/master/sketches/Examples/AutonomousDrive
https://github.com/U-K-L/autonomous_rover/tree/master/sketches/Examples/BearingCalculations
https://github.com/U-K-L/autonomous_rover/tree/master/sketches/Examples/Button
https://github.com/U-K-L/autonomous_rover/tree/master/sketches/Examples/DistanceMovementTest
https://github.com/U-K-L/autonomous_rover/tree/master/sketches/Examples/DistanceReading
https://github.com/U-K-L/autonomous_rover/tree/master/sketches/Examples/GPS
https://github.com/U-K-L/autonomous_rover/tree/master/sketches/Examples/HeadingTest
https://github.com/U-K-L/autonomous_rover/tree/master/sketches/Examples/LoadMap
https://github.com/U-K-L/autonomous_rover/tree/master/sketches/Examples/LoadWayPoints
https://github.com/U-K-L/autonomous_rover/tree/master/sketches/Examples/RPLIDAR_map
https://github.com/U-K-L/autonomous_rover/tree/master/sketches/Examples/RoverTest/RoverTest
https://github.com/U-K-L/autonomous_rover/tree/master/sketches/Examples/Save
https://github.com/U-K-L/autonomous_rover/tree/master/sketches/Examples/SaveMap
https://github.com/U-K-L/autonomous_rover/tree/master/sketches/Examples/UltrasoundTest
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WaypointsTest Test the linked list data structure used for 
waypoints. 

WheelDirection Tests the wheel direction math when tracking a 
path. 

localization Prints IMU data for Unity Virtual Rover. Allows to 
see IMU rotations on unity 3D model. 

matrix Performs examples of using the matrix math. 

orientation Tests IMU calculations. 

rawDataIMU Test the BNO055 updates. This is Adafruit’s test. 

 
 

  

https://github.com/U-K-L/autonomous_rover/tree/master/sketches/Examples/WaypointsTest
https://github.com/U-K-L/autonomous_rover/tree/master/sketches/Examples/WheelDirection
https://github.com/U-K-L/autonomous_rover/tree/master/sketches/Examples/localization
https://github.com/U-K-L/autonomous_rover/tree/master/sketches/Examples/matrix
https://github.com/U-K-L/autonomous_rover/tree/master/sketches/Examples/orientation
https://github.com/U-K-L/autonomous_rover/tree/master/sketches/Examples/rawDataIMU
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Microcontroller and serials 
A Grand Central M4 is the microcontroller used to process the code. It is compatible with Arduino and 
Adafruit libraries giving easy access without the need for an operating system. It has around 256 KB of 
RAM, and processes at 120MHz. The M4 is very capable of handling nearly all aspects of navigation. It 
can easily perform complex equations thousands of times per second. This includes complex equations 
like matrix multiplication, solving inverses of small matrices, sensor fusion, integrals, derivatives, trig 
functions, and quaternions. All of these are used in this project. The M4 struggles to handle SLAM based 
techniques such as mapping, localization, and camera.  
 
Our implementation of the M4 uses C++ programming language, as well as additional serial 
communications.  
 
The following table shows the addresses created for the serials. 
/* 

    | Serial |   | TX arduino pin |   | RX arduino pin |   | SERCOM | 

    ================================================================== 

    | Serial2      18                   19                   4      | 

    | Serial3      16                   17                   1      | 

    | Serial4      14                   15                   5      | 

    ================================================================== 

*/ 

 

 
All we care about are pins (14, 15, 16, 17, 18, 19) since these pins connect to SERCOM ports used to 
communicate with the board through a UART. 
 
Each UART (inherited from HardwareSerial) specifies what pins and what SERCOM they communicate 
with. Then each SERCOM needs a handler. These handlers are called during an interrupt. 

 
Once handlers are made, the TX and RX pins are specified and there is a working Serial port. There are 
limitations however. 
 
There can only be: 

▪ up to 4 UART devices 
▪ up to 2 SPI devices 
▪ up to 2 i2C connections 
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Motor and controls 
The Rover consists of 6 driving motors (LX-16A Bus Servo) and 4 steering servos. 

 

All servos/motors communicate over UART with a baud rate 115200bps and provides: 

1. Angle feedback 
2. temperature feedback 
3. voltage feedback 
4. 2 working modes (Continuous running 360 degrees, variable adjust 240 degrees)  
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Each servo/motor has a particular ID for which to be commanded by. The chassis and code are defined 
below: 
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When turning the Rover different wheels must run at different speeds. This speed of the wheels is 
determined by the point of turning and its distance from the wheel. The calculations are as follows: 
 

 

 

And -100, 100 is the given turn of the servos, that represents a percentage of the tightest left or right turn in 
inches. 
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Object detection 
 
Object detection can use ultrasonic and light-based (LIDAR) sensors. Due to limitations of the M4’s 
memory, the objects are avoided in an ad hoc fashion.  
 

Ultrasonic Sensor 

 

 An ultrasonic sensor uses sound to detect the distance of an object. The sound is propagated as a wave, 
and thus expands omnidirectional as it travels. Each ultrasonic sensor has a particular FoV (Field of 
View). The exact field of view is as follows: 
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The sound reflects off a surface into the receiver. The time difference between when the sound is 
emitted and then received gives the distance. This speed is dependent on the material it propagates 
through. Different densities cause sound to travel slower or faster. Therefore, it works differently (but 
possible) at detecting water, soft bodies, and humid air. 

 

This can be accurately calculated by the following:  

 

 

 
Both light and sound are emitted as waves, which are reflected by constructing a vector with the angle 
of the dot product of the incident ray with the normal vector 
 
For sharp angles and corners, it does not detect the returning sound wave as illustrated above. 
Moreover, sound speeds differ within water, and against soft materials. 
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The gray circle is the ultrasonic sensor. The gray area is its field of view. Here you have an object with an 
assumed width of 20 centimeters. Yet, the red line displays what the rover believes is the width. 
 
This is because ultrasonic sensors can only give distance and not angle. It has little information for 
where an object exists within its field of view, and thus has a large room for error. This error can be 
calculated as the following: 

 

 
 

 
Using two ultrasonic sensors provides a full field of view that covers the entire rover. 
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Clearly, there is an evident blind spot. Moreover, this does not solve the estimated error. An angle can 
be estimated using various different mathematical formulas. By calculating the difference each sensor 
detects the object, an approximate angle can be given. This technique is highly prone to error and is 
often complex. 
  
This reflection is extremely important as it gives the difference between sound and light. When sound 
propagates it propagates omnidirectionally in 3D space. This means that, sound has a cone FOV, and will 
detect irregular surfaces such as the grass.  
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On a curved surface, the reflection cannot be predicted. It can shoot a number of angles, and thus it may 

reflect back into the receiver. 
  
Additionally, on irregular bumpy planes it is possible for the sound to direct itself back into the sensor, 
thus causing it to falsely detect the ground.  
 

 
 
Because sound propagates omnidirectional, the reflected rays will inevitably be received by the receiver. 
It is clear here what ultrasound may have trouble detecting. Understanding the law of reflection, and 
propagation of sound is enough to know what ultrasound can, and cannot detect. A chart or table can 
never enumerate all objects. In particular, for this project's use case, ultrasound will have trouble on 
outdoor terrain. This is because the ground is a bumpy surface, and the FOV will cause diffusion with the 

ground. 
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Diffuse reflection causes rays to reflect in all directions. Because ultrasound grows omnidirectionally as 
it travels, it is highly likely it will detect these diffused rays. Thus, inconsistently detecting false objects 
(such as the ground). 
 

LIDAR Sensor 
A LIDAR is a rotating laser that uses light to detect the distance of an obstacle. Because light has a tiny 
FOV it can accurately detect an angle, and moreover, diffusion does not affect its receiver. However, due 
to the small FOV it is not sufficient at covering a large portion of the rover’s surface. 
 
LIDAR fixes the tiny FOV issue by rotating and calculating distance in angles at 360 degrees. Both 
Ultrasound and LIDAR are similar when it comes to the law of reflection, of which is the most important 
aspect of object detection, but light has a much narrower FOV and travels much faster. Light will not 
detect an object that does not reflect light such as black surfaces. 
 
Moreover, LIDAR is capable of storing the exact positionings of objects in 3D space, due to its extreme 
precision. This is good for calculating the rover’s position, and essential for indoor vehicles. Due to the 
memory limitations, and goal of this project, such an implementation is not feasible. 
 

Collision avoidance 
Collision Avoidance uses sensor-based devices to detect range and angle. The obstacle avoidance 
method assumes a range in meters, and an angle in degrees. It performs flat horizontal planes 
regardless of sensor used. Due to the limitations of the M4, and the inaccuracies of the GPS, the world 
position of the obstacles are not stored. 
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When an obstacle is detected on the desired path at a given range and angle the renters a specified 
state given by the state machine diagram. Once the rover has entered an avoidance state it performs 
the following sequence of events: 

DETECTED X RANGE, Y 
ANGLE. 

BACKUP X METERS TURN LEFT/RIGHT 90 
DEGREES  

FORWARDS X METERS. 

 
The implementation is within the AutonomousDrive.cpp file.  
 
In general, obstacle avoidance is not sufficient for getting to many destinations. It fails many practical 
scenarios (buildings, pathways, roads, gates, circular arrangements, right corners, unsolvable paths etc.) 
In most cases the best way to avoid an obstacle is to simply never aim at it. Never direct a path towards 
an obstacle.  
 
     It should be noted that the failures produced by obstacle avoidance are related to the algorithm, not 
any particular sensor. The sensor is irrelevant here, and rather the methodology is flawed. Storing mini 
maps, or using visual cameras can both aid obstacle avoidance, but are memory intensive. Yet, even the 
very best obstacle avoidance system will not match a simple pathfinder.  Obstacle avoidance is 
necessary, but acts as an aid to pathfinder. As no pathfinder can account for all objects, and no 
detection system can generate a path.  As such, obstacle avoidance is a last resort for when pathfinding 
fails, but it should never be the main tool for navigation. 
 

Navigation 
Navigation is the most important and complex aspect of this software. This document will brief over the 
algorithms, equations, and devices used. It is to show the math for those wishing to understand the 
calculations. There are many ways to navigate, and the most obvious being Breadth First Search. As 
such, it is best to read the Software Design Document to know why each particular algorithm is used, 
and exactly what it does in the overall system. There may also be a fair bit of terminology here that is 
explained in more depth within the Software Design Document. 

 

Localization 
Localization is tracking the rover’s orientation and global positioning in 3D space. There are two spaces 
which we will refer to. World Space represents the Global Positioning of the rover relative to the Earth. 
In actuality, World Space is the GPS device, which gives Global Positioning. Local Space represents 
positioning relative to the rover. Where the starting position of the IMU represents the vector [0,0,0]. 

Both the World Space and Local Space are in R3.  Due to the scope of our design, there are only a few 
devices used for the entirety of localization. The following devices are GPS and IMU. These two devices 
complement each other. A brief summary would be that GPS updates slow, consistent, low resolution, 
and prevents drift. Meanwhile, IMU updates fast, inconsistent, high resolution, highly prone to drift.  
GPS gives world positions, while IMU gives local. 

 

Heading and bearing tracking 
Heading is the current direction the rover is pointing. Bearing is the desired heading to reach a point. 
Track or Course refers to the path calculated and travelled. Here we show a possible method to match 
the rover’s Heading with the Bearing and proceed on the course. 



   

 

63 | P a g e  
 

    

Given a destination within World Space, that is a Latitude and Longitude, the rover must find the 
bearing. Once the bearing is found, the heading of the rover must then match the bearing, and the rover 
linearly follows the line. The Heading and Bearing Tracking algorithm repeats this process until the 
destination is reached. Tolerance is needed to account for errors produced by the heading, and the 
errors produced by mechanical processes such as misalignments of the wheels.  

 
Bearing Tracking Algorithm 

 

1: While (|Heading - Bearing| < tolerance) 

2: Forwards 

3: Turn 

 

There are two slight adjustments needed to be made for a practical implementation. Firstly, the turning 
sequence must be minimal. The rover must turn the direction closest to the desired angle. Secondly, the 
turning must be continuous and not discrete. The wheels must slightly adjust, and not abruptly to avoid 
erroneous movement. 
 

void followBearing(){ 

    float angle1 = ((bearing - heading) / 180) * 100; 

    float angle2 = (((bearing+360) - heading) / 180) * 100; 

    float angle3 = (((bearing - 360) - heading) / 180) * 100; 

if (abs(angle1) < abs(angle2) && abs(angle1) < abs(angle3)) 

    { 

        wheelDirection = angle1; 

    } 

    else if (abs(angle2) < abs(angle3) && abs(angle2) < abs(angle3)) 

    { 

        wheelDirection = angle2; 

    } 

    else 

    { 

        wheelDirection = angle3 

    } 

 
The smallest angle must be found. To find the smallest possible angle, each possible angle reference 
must be calculated. 
 
For the calculation of heading the IMU BNO055 is used. The BNO055 fuses both the gyroscope, 
accelerometer, and magnetometer in order to provide a quaternion that represents the exact rotation 
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of the device. For our usage, we convert the quaternion provided in order to produce a scalar value 
representing the angle of the forward vector. For our purposes, we use the (NASA) JPL Quaternion 
Convention. 
 

void orientation::computeCompass(sensors_event_t * event) { 

    heading = fmod(360 + toDegrees(quaternion.toEuler().x()), 360); 

    incline = -toDegrees(quaternion.toEuler().z()); 

} 

Where the function, “toEuler”, represents the conversion between quaternions and Euler angles. The 
math is standard Quaternion Conversion defined as follows: 
 

 
 
The variables q_{n} represent the elements of the quaternion vector. The vector is 4D. This conversion 
properly calculates the YAW angle of the rover to around 0.01 degree of precision. It should perhaps be 
noted that a simple Magnetometer Compass is not capable of such precision. 
 

Calculating bearing and distance 
The Bearing is the directional point for which the rover must travel to get to a particular segment of the 
line. The bearing is constant, calculated using the latitudinal and longitudinal points of the waypoint. 
This calculation produces a curve on a sphere, that is then approximated as a line with the heading 
calculations. These equations update multiple times per second. 

 
 
  

double RoverGPS::calculateBearing(double latStart, double lonStart, double latDest, 

double lonDest) { 

    latStart = toRadians(latStart); 

    latDest = toRadians(latDest); 

    lonStart = toRadians(lonStart); 

    lonDest = toRadians(lonDest); 

    double y = sin(lonDest - lonStart)*cos(latDest); 

    double x = cos(latStart)*sin(latDest) - sin(latStart)*cos(latDest)*cos(lonDest-

lonStart); 

    double bear = toDegrees(atan2(y, x)); 

    bearing = fmodf((360 + bear), 360.00); //ensures that degree is between 0 and 360. 

    return bearing; 

} 
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The haversine formula is used to calculate the distance between the current global positioning of the 
rover, and the way point. The haversine formula is the spherical laws of cosines but adapted for 
numerical computation which adjusts for floater imprecision. The following shows the calculations 
performed in the code: 

 

 
 

 
 
 
When the distance is below the given accuracy radius, then the destination is reached. 
 

Calculating directional movement 
When the rover moves, it moves along three axes, the X, Y, Z axis. Calculating the proper direction, the 
rover moves in helps at determining small distances which the GPS cannot perceive. This is particularly 
important when avoiding an obstacle. 
  
Two things are needed to calculate this movement. Firstly, the velocity can be calculated by taking an 
integral of the acceleration values, a second integral gives the position.  

 

double RoverGPS::calculateDistance(double latStart, double lonStart, double latDest, 

double lonDest) { 

 

 

    latStart = toRadians(latStart); 

    lonStart = toRadians(lonStart); 

 

    latDest = toRadians(latDest); 

    lonDest = toRadians(lonDest); 

 

    double phiStart = latStart; 

    double phiDest = latDest; 

 

    double deltaLat = (latDest - latStart); 

    double deltaLon = (lonDest - lonStart); 

    double alpha = sin(deltaLat / 2)*sin(deltaLat / 2)+ 

                    

                   cos(phiStart)*cos(phiDest)* 

                    

                   sin(deltaLon / 2)*sin(deltaLon / 2); 

 

    double c = 2 * atan2(sqrt(alpha), sqrt(1-alpha)); 

    distance = (EarthRadius * c)*1000; 

    return distance; 

}  
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There is an amount of drift that naturally occurs due to this calculation.  

ɛ is floater imprecision, and λ is physical mechanical drifting. Both grow quadratically. Additionally, 

the integral has a mathematical error produced by the additional variables. 
 

 
It should also be noted that the particular case of integration performed has different values of error. In 
our usage case we used a trapezoidal integration, that was integrated every 100 milliseconds: 
 

//Trapezoidal double integration to compute position and velocity from 

accelerometer. 

//Delta time is 0.1 since we take a sample every 100 milliseconds. 

void orientation::trapezoidalIntegration() { 

 

    float basevelocityx = abs(velocity.x()); 

    float basevelocityy = abs(velocity.y()); 

    float basevelocityz = abs(velocity.z()); 

 

    float baseaccelerationx = ax; 

    float baseaccelerationy = ay; 

    float baseaccelerationz = az; 

 

    float accelerationx = abs(acceleration.x()); 

    float accelerationy = abs(acceleration.y()); 

    float accelerationz = abs(acceleration.z()); 

 

     

     

    velocity.x() = basevelocityx + baseaccelerationx + ((accelerationx - 
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baseaccelerationx)/2); 

    velocity.y() = basevelocityy + baseaccelerationy + ((accelerationy - 

baseaccelerationy)/2); 

    velocity.z() = basevelocityz + baseaccelerationz + ((accelerationz - 

baseaccelerationz)/2); 

 

    velocity = velocity* 0.1;//Delta time. 

    if (abs(acceleration.x()) < tolerance) { 

        velocity.x() = 0; 

        basevelocityx = 0; 

    } 

    if (abs(acceleration.y()) < tolerance) { 

        velocity.y() = 0; 

        basevelocityy = 0; 

    } 

    if (abs(acceleration.z()) < tolerance) { 

        velocity.z() = 0; 

        basevelocityz = 0; 

    } 

    float forceX = basevelocityx + ((abs(velocity.x()) - basevelocityx) / 2); 

    float forceY = basevelocityy + ((abs(velocity.y()) - basevelocityy) / 2); 

    position.z() = position.z() + basevelocityz + ((abs(velocity.z()) - 

basevelocityz) / 2); 

    if(abs(acceleration.x()) > tolerance || abs(acceleration.y()) > tolerance){ 

        applyForwardsForce(forceX+forceY); 

    } 

 

} 

 

 

The final result only takes into consideration the magnitude of the value. This magnitude is then 
converted into an X, Y, Z coordinate system using the forward vector. 
 

//Applys linear acceleration according to the orientation of the rover using the 

Hamilton Product. 

void orientation::applyForwardsForce(double f){ 

    imu::Vector<3> forwards = imu::Vector<3>(0, 1, 0); //The forwards vector, 

representing the Y plane going forward. 

    forwardsVector = quaternion.rotateVector(forwards);//Performs the hamilton 

product using cross products. 

 

    position = position+(forwardsVector*f); 

    distanceTraveled = sqrt(position.x()*position.x() + position.y()*position.y()); 

} 

 

This gives the total direction traveled in the 360-degree plane. Since the Rover only has 2 degrees of 
freedom, the Z axis is ignored. 
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Calibration 
The BNO055 needs to calibrate in order to successfully calculate orientation. Additionally, there is a 
calibration step performed to get the average values of the system movement. 
 

//Infinite Impulse Response 

void orientation::IIRFilter(double x, double y, double z) { 

    double k = 0.9; 

    xf = k * xf + (1.0 - k) * x; 

    yf = k * yf + (1.0 - k) * y; 

    zf = k * zf + (1.0 - k) * z; 

} 

 

This stabilizes the movement values, which gives more precision to the meters travelled. 

Addendum 
One question that was asked during many presentations by fellow college students was the following, 
“Why do we need to calculate roll angle?” The answer, is to eliminate the force of gravity. Here is a brief 
calculation to eliminate gravity. 

 
 
This image represents the states it experiences due to the forces of gravity. As seen, as the system 
rotates it experiences this force in all axes. This can cause the rover to miscalculate its orientation and 
velocity. This can be calculated precisely with the following: 
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This can be solved as a system of equations. Let J be the rotation matrix. Let g be the gravity matrix. Let 
A be the linear acceleration. Let B be the total acceleration gathered from accelerometer.  
 

 
 
Hence, it is necessary to have all three axes of rotation in order to solve acceleration. This is performed 
on the microprocessor on the BNO055. Additionally, the BNO055 performs sensor fusion akin to the 
Kalman filter in order to retrieve more accurate results. 
 

Troubleshoot diagnostic 
Designing the rover means encountering many bugs. This guide gives techniques to debug specific 
problems. These diagnostics are concerned with the wheel test sketch, and the manual destination. The 
virtual rover has its own separate FAQ document attached with the application. The very best 
benchmark to test the rover is manual destination. It combines all of the code, sensors, wheels, into a 
single sketch to perform a single task. It is best to use manual destination and not virtual sketch. Virtual 
sketch will set points automatically, but the driving code is identical. The issue here is that, virtual sketch 
chooses the shortest path with the least amount of turns (thus reducing mechanical stress). 
 

What points to test with? 
In general, the best test will stress all parts in order to create a failed run. By finding when it fails it is 
easy to see where to improve.  
Firstly, test it outdoors and preferably on grass. There should be multiple points that cover the North, 
South, East, and West. By doing so it stresses the turning code, and more so the bearing and tracking 
math. Additionally, points that cause the rover to turn 180 degrees, and points where the bearing is 180 
degrees or 0 are also important to test. If you review the navigation document it is clear why, finding the 
smallest angle means those angles can cause the rover to turn in place. 
All points should be at least 10 meters apart, since the GPS can only give 3 meters of accuracy 
consistently. The longer the distance the more room for error, and thus the better the test. 
 

How to generally troubleshoot rover 
There are a few general techniques to keep in mind that work for nearly all sketches. 
Firstly, be sure to connect the computer to the rover in order to see the serial monitor. This may be 
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difficult while it is driving, so here is a list of possible ways to do so: 
1) Buy an SD card, every minute the rover records the serial monitor and saves to the SD card in a text 

called “RTD.” 
2) Buy a long USB connector, and walk with the rover. 
3) Turn off the wheels, run the code and check the monitor. 
4) Place the laptop (if it is lightweight) on top of the rover with the Serial Monitor opened. After 

finishing, unplug the laptop and read the serial monitor (it will record it). 
 
Option one is good if the issue is simple, oftentimes option two is best if real-time knowledge is needed. 
The exact meanings of each print in the Serial Monitor is covered in the Quick Start Document. 
The remainder of this document covers what to do if an error is identified.  
 

Wheel test incorrect wrong direction and or turn 
Ensure that each servo ID matches the Motors and Controls document. Ensure that the wheels are 
connected to the proper pins according to the Motor and Controls document (Serial 2). Ensure that all 
libraries are properly setup according to the Quick Start document. 
 
If none of the above works, then make sure to properly read Electrical and Mechanical Design 
documents to ensure that the wheels are connected and positioned properly. 
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Rover turns in place indefinitely 
Check the Serial Monitor, make sure it has properly calibrated. If it has not, it will clearly display that it is 
still calibrating. If it does this after calibration, then check the bearing and heading angles. One way to 
check such angles is using this website: 
https://www.movable-type.co.uk/scripts/latlong.html  
If you enter your location, and the destination, the distance and bearing should match with the serial 
monitor. If not, refer to the Navigation section, and check the math to see if an error exists. 
If the bearing is 0, or 180, then check the smallest angle math manually, and see if the rover has chosen 
an angle, or continues to attempt to choose the smallest. At an angle of 180, and 0, there are multiple 
smallest angles, the code adjusts for this, but this is a critical area to check if this error occurs. 
If nothing works, and the math works correctly when calculated through MatLab or Unity, then check 
that all servos are on the proper ID according to the Servo and Motor Controls document. 
 

Rover heads towards wrong direction 
Firstly, make sure to have the serial monitor printed out to an SD card or a screen. Then check the 
destination and location points against this website:  
https://www.movable-type.co.uk/scripts/latlong.html 
 
The bearing and distance should match the calculator. If not, then read the Navigation document and 
ensure it matches the Movable’s explanation. It should be noted that a thorough understanding of 
spherical trigonometry is needed. Do not simply copy the math to match Movable exactly, as the 
calculations presented on the website (the code posted), are inaccurate, and the actual website’s 
calculator uses a different approach. 
 
The best way to accurately understand the Navigation math is reading this document by  Bob 
Chamberlain from NASA JPL: https://cs.nyu.edu/visual/home/proj/tiger/gisfaq.html. If the team has 
continuing issues and suspects the calculations are an issue, then it is favorable that at least a single 
member understands that entire document. 
 

Rover’s bearing and distance match calculator, but still goes wrong direction 
Then this is an issue with the IMU. Particularly the BNO055. Ensure that the IMU is properly updating, 
and calibrated, and wired. To do this, turn off the wheels, and turn the rover around and see if it 
properly updates the heading. Sometimes, the heading may not update at all, and this is due to wiring 
issues. Read the Electrical Design Documents for proper setup of the BNO055. To troubleshoot the 
BNO055, run the RawDataIMU sketch located within examples. Then turn the rover in place and see the 
updated values. 
 

Object avoidance not turning in place and or going forwards 
The obstacle avoidance should match the obstacle avoidance diagram regardless of sensors used. If not 
then do the following. 
 
Check the Serial Monitor’s state, is it in the Avoidance state when detecting an obstacle? If not, make 
sure the sensors are working, and the code changes the state to avoidance. If it is unclear how the states 
work, then check the State Machine Diagram Document. 
   

https://www.movable-type.co.uk/scripts/latlong.html
https://www.movable-type.co.uk/scripts/latlong.html
https://cs.nyu.edu/visual/home/proj/tiger/gisfaq.html
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Ensure the IMU is properly connected. Check the mechanics, is the rover properly turning, or stuck? 
Check the Navigation Math, final section “Distance Movement.” and see if the values, and or code 
matches exactly. In general, the IMU is used to control obstacle avoidance. Turning in place requires the 
gyroscope to calculate how much to turn. Moving a particular distance requires the accelerometer to 
measure the distance. 
 
If none of the above works, and it is suspected that perhaps the calculations are incorrect, then run the 
Distance Movement Sketch and ensure the expected values match this document: 
https://www.nxp.com/docs/en/application-note/AN3397.pdf (it is again important to understand what 
the document describes, and not copy verbatim, as our implementation is not exactly the same). If it is 
not clear how to test this, then read the Software Design Document Obstacle Avoidance section, where 
the exact method is covered in depth. Additionally, read the Navigation document for more knowledge 
on drifting. 
 
Lastly, the current code avoids obstacles in exact angles, and meters. If one wishes to change this to a 
time-based approach, then this may temporarily fix and simplify the code. How to implement such an 
approach, and the pitfalls are described in the Software Design Document. 
 

Testing code from home 
One of the best ways to test BNO055 is using the Virtual Rover code located here: https://github.com/U-
K-L/virtual_rover 
 
This requires Unity to be installed, it will give the ability to visually see the rover turning in 3D space. 
Simply run the localization sketch located in the examples folder, then connect it to the proper serial 
port (USB). Afterwards, turning the rover in place will update the 3D rover model. It is much easier to 
see if the IMU is properly updating, opposed to reading quaternion data. 
 
The code comes, for free, with a queue based serial connection between Unity and Arduino. Usually, 
this costs money, but it comes for free here. If a team member has a fair understanding of Unity, this 
can drastically speed up programming time, especially if the team only has access (or no access) to the 
rover. Just to name a few things, it can be properly programmed to visualize Ultrasound, Law of 
Reflection, LIDAR scans, IMU rotations, Navigation math, Wheel speed, Ackerman Steering, GPS, 
Pathfinding, etc. Our Software Team has made heavy use of this program to debug many of these errors. 
 
In addition, the program is free to be used for other projects as seen here: 
https://www.instructables.com/id/Ultrasonic-Joystick/ which uses our free solution to make an 
ultrasonic joystick. 
 

Addendum 

Calculator for Bearing and Distance: https://www.movable-type.co.uk/scripts/latlong.html  
In depth explanation of Haversine Formula: https://cs.nyu.edu/visual/home/proj/tiger/gisfaq.html 
IMU calculations for avoiding obstacles: https://www.nxp.com/docs/en/application-note/AN3397.pdf 
 

GitHub public repositories 

MC3 NASA Mars Rover Project repository https://github.com/mc3-nasa 

https://www.nxp.com/docs/en/application-note/AN3397.pdf
https://github.com/U-K-L/virtual_rover
https://github.com/U-K-L/virtual_rover
https://www.instructables.com/id/Ultrasonic-Joystick/
https://www.movable-type.co.uk/scripts/latlong.html
https://cs.nyu.edu/visual/home/proj/tiger/gisfaq.html
https://www.nxp.com/docs/en/application-note/AN3397.pdf
https://github.com/mc3-nasa
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FPGA Design for Object Detection Team 2 
Will Pastor, Nicholas Gahman, Corey Shive 

 

Introduction 

The FPGA project was created as a sub-project of the Mars Rover Project, whose goal was to 
create an autonomous rover that could go to a given coordinate of longitude and latitude with 
zero human intervention using microcontrollers.  One of the possible pathways to this goal was 
a dual camera system that would allow the rover to see just like a human would.  Originally this 
idea was shut down because most microcontrollers cannot handle the computational 
requirements that a dual camera system would have.  Eventually, a device that could handle 
said requirements was found. Field Programmable Gate Arrays (FPGAs) are semiconductor 
devices that are based around a matrix of configurable logic blocks (CLBs) connected via 
programmable interconnects (1). 
 

Chosing FPGA technology 

A FPGA is a hardware device which could be programmed and reprogrammed on the fly. This 
allowed the FPGA to be much more customizable than most microcontrollers, and more 
importantly could have all of its computational power directed towards a single goal. This single 
ability allowed it to have the computational capacity needed to make the dual camera system 
viable. Consequently, the FPGA/dual-cam project was born. 
During the 2019 Fall semester we concentrated on the FPGA Alchitry boards, copper (CU) and 
gold (AU) (2). The Alchitry boards were more suited for people with some FPGA expertise, and 
we needed an entry-level FPGA board suited for students getting started with FPGA technology. 
Early 2020 Spring semester, we selected the Basys 3 (3) as our development board. 
 

 
Figure 1: A picture of the dual cameras and FPGA wired together. 
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Description of the image processing 

The goal of this project is to use the dual camera system to find obstacles, and then broadcast 
the relative location of those obstacles to the main microcontroller on the rover.  In order to do 
this, a five-step plan is initiated.  The first step is to take the two images from the two cameras, 
and process them together to create a disparity map that estimates the depth at each point in 
the frame.  Once this is done, the disparity map is divided into a 4x4 block grid.  Each of the 16 
blocks’ average depth is found.  If a given block’s average depth is closer than a given threshold 
value, said block is dubbed an obstacle.  Finally, the information of each block is sent back to 
the microcontroller in charge of the rover navigation.  For now, 16 outputs are being used, but 
it may be simplified to four outputs or possibly even three, concerning the left, right and center 
respectively. 
 

 
Figure 2: A picture of the resulting display. The left image is the depth map, while the right image is what 

the dual cameras see. 
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Image processing diagrams 

 

 
Figure 3: A diagram of steps one and two of image processing. 
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Figure 4: A diagram of steps three, four and five of image processing. 

 

References 
(1) https://www.xilinx.com/products/silicon-devices/fpga/what-is-an-fpga.html 

(2) https://alchitry.com/ 

(3) https://projects.digilentinc.com/products/basys-3 
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https://projects.digilentinc.com/products/basys-3
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The NASA Mars Curiosity Rover Teams  
-In the order of the presentation 
 

Team 3 Mechanical Design 

Ezra Galapo 

 
Ezra is a student at Temple University but came as a guest student. He joined the NASA Mars Curiosity 
Rover team starting with the 2019 Fall semester and continuing with the 2020 Spring semester. His 
contribution to the project was the 3D-printing and laser cutting of the parts required for rovers 1 and 2. 
 
Jaden Weed 

 
Jaden was a student at North Penn High School but came as a guest student under the “NASA Engage 
and Inspire” Program. Jaden joined the NASA Mars Curiosity Rover team starting with the 2019 Fall 
semester and continuing with the 2020 Spring semester. The knowledge of 3D-printing and laser cutting 
he acquired as a student in the NPHS Engineering Academy made him a valued member of the team. 
Jaden started his studies at Penn State University Park as a first-year student. 
 
 



   

 

78 | P a g e  
 

    

Team 4 Electrical Design 

Paul John Balderston 

 
PJ graduated from Montgomery County Community College with an Associate Degree in Engineering 
Science, with an Electrical Engineering concentration at the end of the 2020 Spring Semester. He is 
currently studying Physics and Mathematics at Penn State University Park. Paul John aims to pursue a 
doctoral program in Physics after completing his undergraduate education. PJ joined the NASA Mars 
Curiosity Rover team starting with the 2019 Fall semester and continuing with the 2020 Spring semester. 
His contribution to the project was the electrical design of both rovers 1 and 2. This included the 
preparation of three PCBs which were manufactured, then implemented onboard the rovers.   
 

Team 1 Software Design 

Noah Williams 

 
Noah earned his Associate of Science degree in 2019 Fall semester. He is currently enrolled at Temple 
University for Computer Science and joined the NASA Mars Curiosity Rover team starting with the 2019 
Fall semester and continuing with the 2020 Spring semester. He worked on high-level software such as 
mathematical calculations and Artificial Intelligence.  His contributions to the project were writing the 
software for navigation, collision detection, pathfinding, and obstacle avoidance for rovers 1 and 2. 



   

 

79 | P a g e  
 

    

Salvatore Sparacio 

 
Sal is working towards an Associate in Science degree in Computer Engineering. He joined the NASA 
Mars Curiosity Rover team starting with the 2019 Fall semester and continuing with the 2020 Spring 
semester. He worked on low-level features that connected the hardware with the software such as IO 
processing, motor controls, customized serials, and state machines for rovers 1 and 2.  
 

Team 2 FPGA Design 

William Pastor 

 
Will enrolled at the college during high school and continues coursework while conducting independent 
study projects. He’s also considering transfer opportunities for undergraduate and graduate study in 
Artificial Intelligence and Machine Learning. Will joined the NASA Mars Curiosity Rover team starting 
with the 2020 Spring semester. Working alongside fellow students Nick Gahman and Corey Shive, Will 
proposed and led the research and development of an FPGA-based sensor for obstacle detection and 
collision avoidance. 
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Nicholas Gahman 

 
Nick is a dual enrollment student in Computer Science and Engineering. He joined the NASA Mars 
Curiosity Rover team starting in the 2019 Summer workshop, 2019 Fall semester and continuing into the 
2020 Spring semester. In the first half of the Spring semester, Nick worked alongside fellow students 
Noah Williams and Salvatore Sparacio, contributing to the obstacle detection and relative movement 
portions of the rover. In the second half of the Spring semester, Nick worked alongside fellow students 
Will Pastor and Corey Shive researching FPGA devices to supplement Noah and Sal’s work on object 
detection and collision avoidance.  Nick continued work on the FPGA into Summer 2020 with Will 
Pastor.  In Fall 2020, Nick began his studies at Penn State Abington as a first-year student with 47 
credits.  Presently, he is working on a machine learning research project concerning Text Summarization. 
 
Corey Shive 

 
Corey is a dual enrollment student in Computer Science. He joined the NASA Mars Curiosity Rover team 
starting in the 2019 Summer workshop, continuing in the 2019 Fall semester and 2020 Spring 
semester. Working alongside fellow students Will Pastor and Nick Gahman, Corey contributed to 
researching FPGA devices to complement Noah and Sal’s work on object detection and collision 
avoidance. 
 
### 


